17,567 research outputs found

    Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells

    Get PDF
    Because beta-catenin target genes such as cyclin D1 are involved in cell cycle progression, we examined whether beta-catenin has a more pervasive role in normal cell proliferation, even upon stimulation by non-Wnt ligands. Here, we demonstrate that epidermal growth factor (EGF) stimulates T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcriptional activity in nontransformed mammary epithelial cells (MCF-10A) and that its transcriptional activity is essential for EGF-mediated progression through G(1)/S phase. Thus, expression of dominant-negative Tcf4 blocks EGF-mediated Tcf/Lef transcriptional activity and bromodeoxyuridine uptake. In fact, the importance of EGF-mediated Tcf/Lef transcriptional activity for cell cycle progression may lie further upstream at the G(1)/S phase transition. We demonstrate that dominant-negative Tcf4 inhibits a reporter of cyclin D1 promoter activity in a dose-dependent manner. Importantly, dominant-negative Tcf4 suppresses EGF- mediated cell cycle activity specifically by thwarting EGF- mediated Tcf/Lef transcriptional activity, not by broader effects on EGF signaling. Thus, although expression of dominant-negative Tcf4 blocks EGF- mediated TOPFLASH activation, it has no effect on either EGF receptor or ERK phosphorylation, further underscoring the fact that Tcf/ Lef-mediated transcription is essential for cell cycle progression, even when other pro-mitogenic signals are at normal levels. Yet, despite its essential role, Tcf/Lef transcriptional activity alone is not sufficient for cell cycle progression. Serum also stimulates Tcf/ Lef transcriptional activation in MCF-10A cells but is unable to promote DNA synthesis. Taken together, our data support a model wherein EGF promotes Tcf/ Lef transcriptional activity, and this signal is essential but not sufficient for cell cycle activity

    Bioengineering models of cell signaling

    Get PDF
    Strategies for rationally manipulating cell behavior in cell-based technologies and molecular therapeutics and understanding effects of environmental agents on physiological systems may be derived from a mechanistic understanding of underlying signaling mechanisms that regulate cell functions. Three crucial attributes of signal transduction necessitate modeling approaches for analyzing these systems: an ever-expanding plethora of signaling molecules and interactions, a highly interconnected biochemical scheme, and concurrent biophysical regulation. Because signal flow is tightly regulated with positive and negative feedbacks and is bidirectional with commands traveling both from outside-in and inside-out, dynamic models that couple biophysical and biochemical elements are required to consider information processing both during transient and steady-state conditions. Unique mathematical frameworks will be needed to obtain an integrated perspective on these complex systems, which operate over wide length and time scales. These may involve a two-level hierarchical approach wherein the overall signaling network is modeled in terms of effective "circuit" or "algorithm" modules, and then each module is correspondingly modeled with more detailed incorporation of its actual underlying biochemical/biophysical molecular interactions

    Signal Processing during Developmental Multicellular Patterning

    Get PDF
    Developing design strategies for tissue engineering and regenerative medicine is limited by our nascent understanding of how cell populations self-organize into multicellular structures on synthetic scaffolds. Mechanistic insights can be gleaned from the quantitative analysis of biomolecular signals that drive multicellular patterning during the natural processes of embryonic and adult development. This review describes three critical layers of signal processing that govern multicellular patterning: spatiotemporal presentation of extracellular cues, intracellular signaling networks that mediate crosstalk among extracellular cues, and finally, intranuclear signal integration at the level of transcriptional regulation. At every level in this hierarchy, the quantitative attributes of signals have a profound impact on patterning. We discuss how experiments and mathematical models are being used to uncover these quantitative features and their impact on multicellular phenotype

    Experimental and theoretical investigation of three-dimensional turbulent boundary layers and turbulence characteristics inside an axial flow inducer passage

    Get PDF
    Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl
    • …
    corecore